17,835 research outputs found

    Dust Formation and He II 4686 emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc

    Full text link
    We present evidence for the formation of dust grains in an unusual Type Ib SN based on late-time spectra of SN 2006jc. The progenitor suffered an LBV-like outburst just 2 yr earlier, and we propose that the dust formation is a consequence of the SN blast wave overtaking that LBV-like shell. The key evidence for dust formation is (a) the appearance of a red/near-IR continuum source fit by 1600 K graphite grains, and (b) fading of the redshifted sides of He I emission lines, yielding progressively more asymmetric blueshifted lines as dust obscures receding material. This provides the strongest case yet for dust formation in any SN Ib/c. Both developments occurred between 51 and 75 d after peak, while other SNe observed to form dust did so after a few hundred days. Geometric considerations indicate that dust formed in the dense swept-up shell between the forward and reverse shocks, and not in the freely expanding SN ejecta. Rapid cooling leading to dust formation may have been aided by extremely high shell densities, as indicated by He I line ratios. The brief epoch of dust formation is accompanied by He II 4686 emission and enhanced X-ray emission. These clues suggest that the unusual dust formation in this object was not due to properties of the SN itself, but instead -- like most peculiarities of SN 2006jc -- was a consequence of the dense environment created by an LBV-like eruption 2 yr before the SN.Comment: ApJ, accepted. added some discussion and 2 figures, better title, conclusions same as previous version. 12 pages, 4 color fig

    Supersonic combustion engine testbed, heat lightning

    Get PDF
    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program

    Synthesis of novel double metal cyanide catalysts and polymerization of PO and CO2

    Get PDF
    Double metal cyanides (DMC) are a versatile group of complexes that find numerous applications in catalytic conversions, e.g. as catalysts for polycondensation of diols and diacids[1], for the ring-opening polymerization of epoxides[2] and their co- and terpolymerization with CO2[3] and cyclic anhydrides.[4] The DMC catalysts usually have a high selectivity; in case of propylene oxide ring opening polymerizations (and in contrast to e.g. alkali-based catalysts), products with low degrees of unsaturation and narrow molecular weight distributions are obtained. A major challenge in the application of DMC catalysts is that they generally feature an induction period of several minutes up to hours during which no substantial propagation is observed. The length of the induction period is affected for instance by the catalyst preparation itself but also by the presence of impurities.[6,7] Up to this date, no reliable model exists that allows the prediction of the length of this activation step. This does not only result in decreasing overall space-time yield but also is a serious safety issue as the spontaneous initiation at the end of the induction period causes an increase in temperature due to the exothermic polymerization reactions. Please click Additional Files below to see the full abstract

    Chandra HETGS Multi-Phase Spectroscopy of the Young Magnetic O Star theta^1 Orionis C

    Full text link
    We report on four Chandra grating observations of the oblique magnetic rotator theta^1 Ori C (O5.5 V) covering a wide range of viewing angles with respect to the star's 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta^1 Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray emitting plasma with rotation phase.Comment: 52 pages, 14 figures (1 color), 6 tables. To appear in the Astrophysical Journal, 1 August 2005, v628, issue 2. New version corrects e-mail address, figure and table formatting problem

    Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71

    Get PDF
    To better understand the LBV phenomenon, we analyze multi-epoch and multi-wavelength spectra and photometry of R71. Pre-outburst spectra are analyzed with the radiative transfer code CMFGEN to determine the star's fundamental stellar parameters. During quiescence, R71 has an effective temperature of Teff=15500 KT_\mathrm{{eff}} = 15\,500~K and a luminosity of log(L/L)(L_*/L_{\odot}) = 5.78 and is thus a classical LBV, but at the lower luminosity end of this group. We determine its mass-loss rate to 4.0×106 M 4.0 \times 10^{-6}~M_{\odot}~yr1^{-1}. We present R71's spectral energy distribution from the near-ultraviolet to the mid-infrared during its present outburst. Mid-infrared observations suggest that we are witnessing dust formation and grain evolution. Semi-regular oscillatory variability in the star's light curve is observed during the current outburst. Absorption lines develop a second blue component on a timescale twice that length. The variability may consist of one (quasi-)periodic component with P ~ 425/850 d with additional variations superimposed. During its current S Doradus outburst, R71 occupies a region in the HR diagram at the high-luminosity extension of the Cepheid instability strip and exhibits similar irregular variations as RV Tau variables. LBVs do not pass the Cepheid instability strip because of core evolution, but they develop comparable cool, low-mass, extended atmospheres in which convective instabilities may occur. As in the case of RV Tau variables, the occurrence of double absorption lines with an apparent regular cycle may be due to shocks within the atmosphere and period doubling may explain the factor of two in the lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&

    Determining the CP parity of Higgs bosons at the LHC in their tau decay channels

    Full text link
    If neutral Higgs bosons will be discovered at the CERN Large Hadron Collider (LHC) then an important subsequent issue will be the investigation of their CP nature. Higgs boson decays into tau lepton pairs are particularly suited in this respect. Analyzing the three charged pion decay modes of the tau leptons and taking expected measurement uncertainties at the LHC into account, we show that the CP properties of a Higgs boson can be pinned down with appropriately chosen observables, provided that sufficiently large event numbers will eventually be available.Comment: Latex, 10 pages, 4 figure

    Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    Get PDF
    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits

    Extended Magnetic Dome Induced by Low Pressures in Superconducting FeSe1-x_\mathrm{1\text{-}x}Sx_\mathrm{x}

    Full text link
    We report muon spin rotation (μ\muSR) and magnetization measurements under pressure on Fe1+δ_{1+\delta}Se1-x_\mathrm{1\text{-}x}Sx_\mathrm{x} with x 0.11\approx 0.11.Above p0.6p\approx0.6 GPa we find microscopic coexistence of superconductivity with an extended dome of long range magnetic order that spans a pressure range between previously reported separated magnetic phases. The magnetism initially competes on an atomic scale with the coexisting superconductivity leading to a local maximum and minimum of the superconducting Tc(p)T_\mathrm{c}(p). The maximum of TcT_\mathrm{c} corresponds to the onset of magnetism while the minimum coincides with the pressure of strongest competition. A shift of the maximum of Tc(p)T_\mathrm{c}(p) for a series of single crystals with x up to 0.14 roughly extrapolates to a putative magnetic and superconducting state at ambient pressure for x 0.2\geq0.2.Comment: 10 pages, 6 figures, including supplemental materia

    Hubble Space Telescope Survey of Interstellar ^12CO/^13CO in the Solar Neighborhood

    Full text link
    We examine 20 diffuse and translucent Galactic sight lines and extract the column densities of the ^12CO and ^13CO isotopologues from their ultraviolet A--X absorption bands detected in archival Space Telescope Imaging Spectrograph data with lambda/Deltalambda geq 46,000. Five more targets with Goddard High-Resolution Spectrograph data are added to the sample that more than doubles the number of sight lines with published Hubble Space Telescope observations of ^13CO. Most sight lines have 12-to-13 isotopic ratios that are not significantly different from the local value of 70 for ^12C/^13C, which is based on mm-wave observations of rotational lines in emission from CO and H_2CO inside dense molecular clouds, as well as on results from optical measurements of CH^+. Five of the 25 sight lines are found to be fractionated toward lower 12-to-13 values, while three sight lines in the sample are fractionated toward higher ratios, signaling the predominance of either isotopic charge exchange or selective photodissociation, respectively. There are no obvious trends of the ^12CO-to-^13CO ratio with physical conditions such as gas temperature or density, yet ^12CO/^13CO does vary in a complicated manner with the column density of either CO isotopologue, owing to varying levels of competition between isotopic charge exchange and selective photodissociation in the fractionation of CO. Finally, rotational temperatures of H_2 show that all sight lines with detected amounts of ^13CO pass through gas that is on average colder by 20 K than the gas without ^13CO. This colder gas is also sampled by CN and C_2 molecules, the latter indicating gas kinetic temperatures of only 28 K, enough to facilitate an efficient charge exchange reaction that lowers the value of ^12CO/^13CO.Comment: 1-column emulateapj, 23 pages, 9 figure

    Multi-epoch Doppler tomography and polarimetry of QQ Vul

    Get PDF
    We present multi-epoch high-resolution spectroscopy and photoelectric polarimetry of the long-period polar (AM Herculis star) QQ Vul. The blue emission lines show several distinct components, the sharpest of which can unequivocally be assigned to the illuminated hemisphere of the secondary star and used to trace its orbital motion. This narrow emission line can be used in combination with Nai-absorption lines from the photosphere of the companion to build a stable long-term ephemeris for the star: inferior conjunction of the companion occurs at HJD = 244 8446.4710(5)+E×0. d 15452011(11). The polarization curves are dissimilar at different epochs, thus supporting the idea of fundamental changes of the accretion geometry, e.g. between one- and two-pole accretion modes. The linear polarization pulses display a random scatter by 0.2 phase units and are not suitable for the determination of the binary period. The polarization data suggest that the magnetic (dipolar) axis has a co-latitude of 23 ◦ , an azimuth of −50 ◦, and an orbital inclination between 50 ◦ and 70 ◦. Doppler images of blue emission and red absorption lines show a clear separatio
    corecore